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P A I R  E X P L O S I O N  I N  A N  E X P O N E N T I A L  A T M O S P H E R E  
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The problem of the interaction of  two coaxial explosions in a barometric atmosphere is solved numerically 

based on the complete system of Navier-Stokes equations. Basic regularities that occur in the interference of 

two spherical shock waves of  different intensities are studied. The last stage of the processes, when shock 

wave processes become unimportant and convection plays a dominant  part, is investigated. 

The class of phenomena involving a collision of spherical shock waves is extremely wide, and the scale of 

such phenomena also ranges widely, from laser sparks and electric discharges [1, 2 ] to objects of astronomical 

dimensions [3 ]. Generally, the interaction of two spherical shock waves (SW) is a three-dimensional nonstationary 

problem, and its solution is beyond the potentialities of modern computers so far (in a full-scale experiment, this 

problem was treated in [4 ]). In this connection it is reasonable to turn to simpler formulations; in particular, we 

may examine the problem of a pair explosion in an exponential atmosphere when explosion centers lie on a common 

vertical. 

In the present work we present some results obtained in a numerical calculation that reflect basic 

regularities that occur in the interference of two spherical SW of different intensities. We investigated the following 

aspects of a pair explosion in an exponential atmosphere: conversion of a regular SW reflection to a Mach reflection, 

SW propagation over central regions with pronounced entropy nonuniformities, and the appearance and merging 

of complex vortex stuctures in the development of convective flows. 

1. As a mathematical model of the phenomenon, we take the complete system of nonstationary Navier- 

Stokes equations for a compressible heat-conducting gas in cylindrical coordinates (r, z) and the equation of state 

for an ideal gas (see [5]). 

The problem is solved in the rectangular region V(t) = {0 _< r _< f(t), ~o_(t) _< z _< 9o+(0} with moving 

right-hand, upper, and lower boundaries that are located in a practically a undisturbed medium and shift as the 

SW expands. 
The boundary conditions are the following: 

for r = 0 u = Ov/Or = Op/Or = OT/Or = 0 ; 

r = f ( 0  
for z=~o_+(t) u = v = 0 ,  P = P a ( Z ) ,  T = T  O 

(here, pa(z)is the pressure in an exponential atmosphere at the altitude z and T O is the temperature). The initial 

conditions are as follows: inside two regions involved in explosions, the parameter distributions correspond to 

solutions of the explosion problem thai are obtained using one-dimensional methods (see [5 ]), and outside them, 

they correspond to parameters of an undisturbed barometric atmosphere. Dissipative factors, namely, viscosity and 

radiative heat conduction, are taken into account: the coefficients/~ and k are approximated by power-law relations 

N T ~~ and k - Tap fl (see [6 ]). 

The initial equations as well as the boundary and initial conditions are made dimensionless with the aid 

of the following characteristic parameters: the altitude of the homogeneous atmosphere A is the linear scale, 

x/-A-Tg and ~ are the time and velocity scales, and P0 = Pa(Zl) and TO are the pressure and temperature scales. 

Thus, the governing parameters of the problem are: 
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Fig. 1: Pressure  and tempera ture  distributions along the symmet ry  axis z: a) 

t = 0.008; b) 0.025; c) 0.07. 

Z 1 = z l / A  , z 2 = z ' 2 / A  , R 1 = R ' I / A  , R 2 = R ; / A ,  

o 1/2 
M = ( A g / y R  TO) , Re = A Vr--~gpo//UO, 

P r = c p f f o P o / k  o ,  7 = c p / C v ,  a ,  fl , oo. 

2. The  initial sys tem of differential equations is discretized using an implicit difference scheme of splitting 

with respect  to coordinate  directions and  functions [5]. To suppress nonphysical  oscillations resul t ing f rom 

nonmonotonici ty of the chosen scheme, regularization of the numerical  solution is used. Calculations are performed 

on a uniform 71• grid in the r and z directions, respectively. 

3. We now proceed to a consideration of the results of calculating a pair explosion with the following values 

of the governing parameters :  

R e =  107", P r =  1", M = 0 . 6 ;  7 =  1.4; o9= 1.5; 

a = 1.5 ; /3 = - 2 ; R 1 = 0.2 ; R 2 = 0.15.  

The  pressure drop on the front of the lower SW at t = 0 is Pl = 7, and of the upper  SW, P2 = 20. (Clearly,  with the 

above Reynolds  numbers ,  dissipative factors manifest  themselves only in the central  regions of the explosions, 

where the tempera tures  are high and the densities are low.) 

The  evolution of the interference pat tern of the shock waves may be seen in Fig. 1, in which distributions 

of the pressure p (solid curves) and temperature  T (dashed curves) along the symmet ry  axis z are presented for 

three moments  of t ime (t = 0.008, 0.025, and 0.07). 

Figure la  illustrates the instant  immediately after the collision has begun - the pressure intensi ty at the 

contact rises sharply.  The  interaction occurs in a dense gas, in a zone with a relatively low temperature;  as a result, 

two SW are formed that  move in opposite directions. 

Figure lb  shows the next  stage of the process, where the SW interact with the boundaries  of a sharp  density 

change at the entrance to the hot central  regions of the explosions. Here,  these waves break up into SW that  continue 

to move in the previous direction and rarefaction waves that are directed toward the zone of the initial contact. 

Once the SW fronts enter  hot rarefied gas, their propagation velocities increase appreciably,  the intensities fall, 

and the shocks themselves are strongly "smeared." This effect is known both from laboratory exper iments  on the 

interaction of laser  sparks [1 ] and  from data of calculation of the collision of SW with thermals  [7 ]; it occurs when 

the velocity of the front prior to penetrat ion into hot gas is smaller than the local velocity of sound in it. The  more 

heated the layers that  the fronts enter,  the more strongly are they accelerated and  smeared;  in turn, intense SW 

markedly  "deform" the hot central  zones (see the distribution of T in Fig. lb) .  
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Fig. 2. Isotherms (solid curves) and streamlines (dashed curves) for four 
instants of time: a) t = O; b) 0.07; c) 0.47; d) 1.06. 

Upon escaping from rarefied regions, the shocks interact with the boundaries of a sharp density rise, 

breaking up into SW pairs that move in opposite directions: some are directed backward into the hot zones and the 

others follow the leading fronts (see Fig. lc). After a time, the latter overtake the leading SW, increasing their 

intensity to some extent. This overtaking is realized if the leading shocks are still ra ther  intense by this time (as 

is in the version considered).  Otherwise, zones of return flow with negative phases of excess pressure Ap = p - 1 

and velocity are formed behind the primary SW with small pressure drops, and then situations are possible where 

the secondary shocks do not overtake the leading shocks (see [8 ]). This occurs when the total negative momentum 

of the return motion is greater  than the corresponding positive momentum of the overtaking wave. 

At the initial stage of the interference of the SW, when angles between the fronts are small, the reflection 

is of regular  character .  After a limiting angle has been passed, the interaction of the SW becomes a March 

interaction. By the time t = 0.07, a complex transitional structure in the form of a suspended compression shock is 

formed between the fronts; it is precisely here that maximum pressures are realized (see [2 ] for details). 

Calculations demonstrated that the shock-wave phase of the interaction of two explosions, when the primary 

and secondary shock waves exert a decisive effect on the distribution of gasdynamic parameters in the disturbed 

region, is relatively short, lasting for up to about t = 0.07. After that, the secondary SW weaken so much that they 

do not play any noticeable role in subsequent evolution of the gas volume involved in the motion. Thus,  by the time 

t = 0.11 the secondary shocks, formed upon the escape of the SW from the hot explosion regions, arrive at the 

rarefied zone near  the initial contact. But a head-on collision of these shocks leads, because of their low intensity, 

only to an insignificant increase in the pressure in the region of the initial contact. 

We now pass on to a consideration of the final, convective, stage of interaction. Figure 2 gives distributions 

of isotherms (solid curves) for four instants of time. In Fig. 2a, isotherms in across section at t -- 0 (prior to 

commencement of the collision) have the form of isolated concentric semicircles. Subsequently, as a result of the 

collisional interaction, they bend markedly,  assuming shapes in the directions of SW propagation that characterize 

a single thermal that ascends in an atmosphere under  the action of gravity, but for a significantly later time (see 

Fig. 2b, t = 0.07). Such collisional deformation of thermal elements was noted in experiments in shock tubes (see, 

for example, [9 ]) and was also obtained in calculations [7 ]. 

Then,  as the convection intensifies and the wave processes fade out, the flow develops similarly to an ascend 

of two coaxial thermals (see [10 ]). The  upper hot region ascends by the law of isolated formation z - t  b2, and the 

lower region, floating up in the wake of the upper one with insignificant resistance of the ambient medium, moves 

following the law z - t  2 (the altitudes of ascend are specified by the points with maximum temperatures) .  Here,  
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the upper hot cloud takes the form of a "mushroom cap," and the lower, of the "stalk" (see Fig. 2c, t = 0.47). 

Gradually the lower thermal overtakes the upper one (as if the "stalk" is drawn into the "cap") and merges with it 

(see Fig. 2d, t = 1.06). The resulting monoformation floats up by the law of a single thermal z - t  1/2 and has the 

characteristic form of a "mushroom cap," with a temperature maximum that has already departed from the 

symmetry axis (see Fig. 2d). 

Early in the development of the convective motion a complex vortex structure is generated in the form of 

a pair of vortex tories with a unidirectional, namely, clockwise, gas rotation (see the dashed curves in Fig. 2c; here 

streamlines constructed based on the instantaneous velocity vector field are presented). As the thermals merge, the 

vortex field also transforms, and a toroidal monovortex is formed by the time t = 1.06 (see the dashed curves in 

Fig. 2d). It should be noted that a monovortex is formed somewhat after the temperature structures merge into a 

unified formation with a single maximum. 

Generally, the process of interaction of two explosions may be divided into three stages. The first stage 

(t < 0.07) is a shock wave one, it is characterized by an intricate pattern of SW interference and includes regular 

and Mach reflections in a head-on collision of the leading fronts and interactions of secondary SW with one another 

and with zones of entropy nonuniformities. The second is a shock-convective stage (0.07 < t < 0.14-0.18). At this 

stage, on the one hand, the influence of secondary shocks on flow development is still appreciable and, on the other 

hand, intense convective flows already arise due to gravity. And lastly comes the final, third, stage (t > 0.18) in 

which convection plays an absolutely dominant role and wave disturbances are insignificant. 

N O T A T I O N  

t, time; r, z, cylindrical coordinates; v = (u, v), velocity; p, density; p, pressure; T, temperature; p, k, 

dynamic viscosity and thermal conductivity; V(t), calculation region; f(t),  ~,+_(t), boundaries of the calculation 
t 

region; zl, z~, altitudes of the centers of the lower and upper explosions; R1, R2, initial radii of the regions involved 

in the explosions; A, altitude of the homogeneous atmosphere; g, acceleration due to gravity; 7, adiabatic exponent; 

a, fi, a~, parameters; M, Mach number; Re, Reynolds number; Pr, Prandtl number; Cp, cv, specific heats. 
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